3D XPoint的原理解析 NAND和DRAM为什么拼不过它 - 存储 ...

来源:未知 发布于 2019-06-12  浏览 次  
英特尔与美光公司指出,未来工艺尺寸伸缩将同时出现在光刻与层3D堆叠这两个方面。横向与纵向的规模可调整能力将成为关键,保证其未来仍然具有进一步可延展性,这是因为基于氩氟的传统多模式浸没式光刻技术在10纳米级别上已经失去了经济性优势,而目前尚未出现任何明确的继任技术可供选择。如此一来,NAND就需要使用更为复杂的垃圾回收算法,从而更为高效地实现性能水平。然而无论算法多么精巧,处于稳定状态的驱动器在性能上仍然会因此受到影响,因为必须采用固定的读取-修改-写入周期才能对块中的单一页进行擦除。然而,英特尔与美光公司已经在声明当中就此作出了明确回应,表示日前发布的公告仅仅属于一项技术性结论。两家公司拒绝就基于这项新技术的未来面世产品发表任何评论。换句话来说,这两家企业将各自打造自己的产品方案,并预计将在明年正式将其交付至广大用户手中。英特尔与美光选择的方式也极具现实意义,因为引导稳定晶体结构发生变化很可能意味着对不同原子结构长度进行频繁调节,而这有可能影响到存储单元之间连接材料,最终导致使用寿命降低。考虑到这一点,惟一可行的就只有化学调整方式了,更具体地讲对存储单元中的bit电子结构进行调整,从而使其出现电阻差异。由于外部刺激的存在,其中将有2个电子翻转自旋并占据高能量eg轨道,而这也就是所谓亚稳定状态。根据周边原子的实际排列,这种状态实际上也可以表现得非常稳定,但却与原始基态在性质上存在很大的不同。不过将这种原理推广到大量材料之上,从原则上讲非常困难。简要概括,各类研究论文指出自旋交叉化合物可以直接进行对接并实现电阻变化,但与这类操作相关的大部分论文都属于化工学科,探讨的也主要为碳纳米管、石墨烯层或者有机链等对象。在这篇论文当中,低自旋/高自旋状态将提供或不提供两种极性之间的导电率,具体取决于金属原子的实际性质、电阻、特性以及/或者平台稳定性水平。英特尔公司需要开发出这样一种材料,其能够通过电压变化而非外部刺激实现编程,而这显然将复杂性提升到了新的高度。从这一点出发,材料的可延展性与基础特性成为实现大规模自旋交叉的主要障碍,特别是在同时采用碳纳米管的情况之下。如果要对大量金属材料进行延展,那么我们需要为其提供一个单独的金属环境进行批量处理,带线(与间隙)会令原本单纯的轨迹概念变得更加模糊,因此我们根本无法将其纳入至存储单元之中。当析出并连接的金属原子数量达到一定程度后,其会形成一条位于两个电极之间的导线。而要切断这条导线,我们需要施加反向电位差,从而将导线中的原子重新氧化成电解质的组成部分。最终的电极-电解质-电极组合仍然具备导电能力,但其电阻要高于前面提到的存在导线的情况。不过对于任何一位对于电解机制比较熟悉的朋友来说,以上概括性描述同时也带来了大量问题。首先,也许存储单元当中使用的是液态材质,但我们更倾向于假定需要处理的是处于固态材料当中的移动离子,其活动空间介于各嵌入点之间(也就是晶格/框架之间的空间)。在这种情况下,分叉线就会出现类似于闪电的表现形式。而在对不同电极进行彼此连接时,或者至少是在电子隧道的长度之内,导线本身的电阻差异(从高电阻到低电阻)也相当巨大。不过随着导线的持续构建,电阻值也会不断降低。考虑到这一点,建立导线这种处理方式确实能够为每个单元提供多bit容纳能力,但正如我之前所提到,其实施难度也相当之大。另一项因素在于逆转的过程通常是由同样的材料作为离子提供活性电极,但这意味着电极本身基本上也具备可溶解性。通过研究我们看到,这恐怕会对产品的使用寿命造成影响。图片下方列出的正是当时正处于研发状态的存储单元,演示材料中确实提到了桥接技术的存在。为了确保活性电极不会在逆向编程过程中被吃掉,技术人员设置了一套大型离子库供其调用。另一个电极则尺寸很小,以便于导线能够定向构建。只要整个电解质层够小(数个单分子层),那么读取/写入操作的速度将极快、实现也将非常容易。从英特尔给出的一些图片来看,3D XPoint的基本单元结构和目前的存储芯片非常相似,都拥有完整的字线和位线,数据存储在交叉叠起的字线和位线之间。字线或者位线之间存在的特定电压差,能够改变一种特殊材料的电阻。当数据需要读取时,字线和位线可以检测某个存储单位的电阻值,根据其电阻值来反馈数据存储情况。